
Graham Priest Inconsistent Arithmetics:
Issues Technical and
Philosophical

The study of inconsistent arithmetics is relatively young, going back about
25 years. It has, however, already occasioned a number of both interesting
technical results and philosophical controversies. There are still, moreover,
important technical questions to be answered, and philosophical issues to be
debated. In this paper I will review the area and discuss some of these issues.
In the first part of the paper I will survey the relevant technical material,
ending with a number of open problems; in the second part, I will review
some of the philosophical material, ending with a discussion of one central
debate in the area.

1. Technical Issues

1.1. Historical Overview

The first person to construct an inconsistent arithmetic (as far as I know) was
Nelson (1959), who used a realisability semantics to produce an inconsistent
arithmetic, based on a paraconsistent logic of an intuitionist kind. Current
developments in the subject, however, trace back, not to this, but to Meyer’s
paper, ‘Relevant Arithmetic’. This paper, in an incomplete form, was circu-
lated amongst relevant logicians, and was abstracted as Meyer (1976); sadly,
the full version of the paper has never appeared, as far as I know. Meyer’s
concern was relevant Peano Arithmetic, that is, essentially, the axiomatic
arithmetic in which one takes the Peano Axioms, replaces the conditionals
employed with a relevant conditional, and then uses an underlying relevant
logic, R in Meyer’s case, to prove things about numbers. In investigating
the properties of this theory, Meyer noticed that it could be given a finitary
consistency proof—showing that Gödel’s Second Incompleteness Theorem
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may not apply once one jettisons classical logic. Specifically, there are mod-
els with a two-element domain which verify all the theorems. The models
were also models of the three-valued logic RM3, and they did a lot more
than verify all the theorems of relevant Peano Arithmetic: they verified an
inconsistent set of sentences.

In Meyer and Mortensen (1984) generalisations of Meyer’s model were
investigated.1 Specifically, different finite sizes of the domain were employed,
as were different many-valued semantics for the conditional. It thus became
clear that there was a substantial family of inconsistent arithmetics. The
models were constructed, in effect, by deploying a relation on the natural
numbers which is a congruence with respect to successor, addition, and
multiplication. Mortensen realised that similar techniques could be applied
to the numbers in a non-standard model of arithmetic. In Mortensen (1986),
he constructed many inconsistent arithmetics using this technique. In (1988)
he investigated a number of the properties of this family of arithmetics. He
also observed that the techniques in question could be applied, equally, to
give inconsistent theories of other sorts of mathematical theory, such as fields
and rings. In (1990) he deployed these ideas to produce inconsistent models
of the differential calculus. Mortensen’s work is nicely summarised in his
(1995). Priest (1995), Part 4, Technical Appendix, used similar techniques to
construct inconsistent set-theories with various properties. (In what follows,
I will restrict myself to considering just the inconsistent natural-number
arithmetics.)

Two things had become clear by this time. The first is that the inconsis-
tent arithmetics are very powerful. Specifically, they can be made to contain
all of the sentences true in the standard model of arithmetic—as expressed
using just the classical propositional connectives, ∧, ∨, ¬ and ⊃, where
α ⊃ β is defined in the usual way as ¬α∨ β. The second was that, although
a lot of the initial interest in these arithmetics was occasioned by an inter-
est in a non-material conditional, and, specifically, in what could be proved
using such a conditional, once one moved to a model-theoretic perspective,
the non-material conditional was not playing a large role: all of the truths of
the standard model came for free anyway. This meant that one could simply
forget about the non-material conditional, and investigate the structure of
the theories, as expressed in the classical vocabulary (though the underly-
ing logic could not, of course, be classical, since the interpretations model
inconsistent sets of sentences). This, in turn, allowed inconsistent models to

1In Mortensen and Meyer (1985) there is also an application of the inconsistent models
to arithmetic based on a non-distributive quantum logic.
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be constructed by a simple yet powerful model-theoretic construction now
called the Collapsing Lemma. A form of this had already been established
by Dunn in (1979); a version which allowed it to be immediately applicable
to the construction of inconsistent models was given in Priest (1991).

All the tools were now at hand for circumscribing an important class
of inconsistent arithmetics, and investigating their structure. The class was
simple enough to be natural, and complex enough to be mathematically
interesting. The analysis of the finite case was given in Priest (1997), and of
the general case in Priest (2000). I will explain the details in what follows.

1.2. LP and FDE

The underlying logic for the arithmetics is First Degree Entailment (FDE)
or LP . It does not make a difference which, as we will see in a moment. Let
me start by specifying the semantics of the logic.2

The vocabulary of the languages in question is that of first-order logic
with identity. (We take ⊃ to be defined in the usual way.) For simplicity,
I suppose that there are no free variables. An FDE interpretation, I, for
the language is a pair, 〈D, d〉, where D is the (non-empty) domain of quan-
tification, and d is a function that maps every constant to an object in the
domain, every n-place function symbol to an n-place function on the domain,
and every n-place predicate, P , to a pair, 〈EP , AP 〉, each member of which
is a subset of the set of n-tuples of D, Dn. EP is the extension of P ; AP is
the anti-extension. The extension of the identity predicate, E=, is, as usual,
{〈d, d〉 : d ∈ D}. For an LP interpretation, we require, in addition, that
for every n-place predicate, P , EP ∪ AP = Dn. (This is the only difference
between FDE and LP .)

Every term, t, is assigned a denotation, d(t), in the usual recursive fash-
ion. Every sentence, α, is assigned a truth value, ν(α), which is a subset of
{1, 0}, non-empty in the case of LP . For atomic sentences, the truth/falsity
conditions are:

1 ∈ ν(Pt1...tn) iff 〈d(t1), ..., d(tn)〉 ∈ EP

0 ∈ ν(Pt1...tn) iff 〈d(t1), ..., d(tn)〉 ∈ AP

Truth/falsity conditions for the connectives are:

1 ∈ ν(¬α) iff 0 ∈ ν(α)
0 ∈ ν(¬α) iff 1 ∈ ν(α)

1 ∈ ν(α ∧ β) iff 1 ∈ ν(α) and 1 ∈ ν(β)

2For further details, see Priest (2001), ch. 8.
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0 ∈ ν(α ∧ β) iff 0 ∈ ν(α) or 0 ∈ ν(β)

1 ∈ ν(α ∨ β) iff 1 ∈ ν(α) or 1 ∈ ν(β)
0 ∈ ν(α ∧ β) iff 0 ∈ ν(α) and 0 ∈ ν(β)

For the quantifiers, we assume that the language has been augmented, if
necessary, by names, in such a way that every member, d, of D has a name,
d.

1 ∈ ν(∀xα(x)) iff for every d ∈ D, 1 ∈ ν(α(d))
0 ∈ ν(∀xα(x)) iff for some d ∈ D, 0 ∈ ν(α(d))

1 ∈ ν(∃xα(x)) iff for some d ∈ D, 1 ∈ ν(α(d))
0 ∈ ν(∃xα(x)) iff for every d ∈ D, 0 ∈ ν(α(d))

An interpretation is a model of α iff, in that interpretation, 1 ∈ ν(α); it is a
model of a set of sentences, Σ, iff it is a model of every member of Σ; and
an inference is valid (²) iff every model of the premises is a model of the
conclusion.

It should be noted that if, for every predicate, P , EP and AP are ex-
clusive and exhaustive, then we have, in effect, an interpretation of classical
first order logic. All classical interpretations are therefore FDE (and LP )
interpretations.

1.3. The Collapsing Lemma

We can now state the Collapsing Lemma. Let I = 〈D, d〉 be any inter-
pretation. Let ∼ be an equivalence relation on D, which is also a con-
gruence relation on the denotations of the function symbols in the lan-
guage (i.e., if g is such a denotation, and di ∼ ei for all 1 ≤ i ≤ n, then
g(d1, ..., dn) ∼ g(e1, ..., en)). If d ∈ D let [d] be the equivalence class of d
under ∼. Define an interpretation, I∼ = 〈D∼, d∼〉, to be called the collapsed
interpretation. D∼ = {[d]; d ∈ D}; if c is a constant, d∼(c) = [d(c)]; if f is
an n-place function symbol:

d∼(f)([d1], ..., [dn]) = [d(f)(d1, ..., dn)]

(this is well defined, since ∼ is a congruence relation); and if P is an n-place
predicate, its extension and anti-extension in I∼, E∼

P and A∼P , are defined
by:

〈[d1], ..., [dn]〉 ∈ E∼
P iff for all 1 ≤ i ≤ n, ∃ei ∼ di, 〈e1, ..., en〉 ∈ EP

〈[d1], ..., [dn]〉 ∈ A∼P iff for all 1 ≤ i ≤ n, ∃ei ∼ di, 〈e1, ..., en〉 ∈ AP

where EP and AP are the extension and anti-extension of P in I. It is easy
to check that E∼

= is {〈[d], [d]〉 ; d ∈ D}, as required.
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The collapsed interpretation, in effect, identifies all members of an equiv-
alence class to produce a composite individual which has the properties of
all of its members. It may, of course, be inconsistent, even if its members
are not.

A swift induction confirms that for any term, t, d∼(t) = [d(t)]. Hence:
1 ∈ ν(Pt1...tn) ⇒ 〈d(t1), ..., d(tn)〉 ∈ EP

⇒ 〈[d(t1)], ..., [d(tn)]〉 ∈ E∼
P

⇒ 〈d∼(t1), ..., d∼(tn)〉 ∈ E∼
P

⇒ 1 ∈ ν∼(Pt1...tn)
Similarly for 0 and anti-extensions. A routine argument by induction then
establishes that this condition obtains for all formulas; i.e., for all α, ν(α) ⊆
ν∼(α). This is the Collapsing Lemma.3

The Collapsing Lemma assures us that if an interpretation is a model
of some set of sentences, then any interpretation obtained by collapsing
it will also be a model. This gives us an important way of constructing
inconsistent models of a theory. Start with any model of the theory, possibly
a classical model, and collapse. Any collapsed model will be a model of the
original theory, though, in general, it will be inconsistent. I will illustrate
by constructing some inconsistent models of arithmetic.

1.4. Collapsed Models of Arithmetic

Let us start with a definition. Let L be the standard language of first-
order arithmetic: one constant, 0, function symbols for successor, addition,
and multiplication (′, +, and ×, respectively), and one predicate symbol,
=. Let N be the standard (classical) interpretation of this language; and
if M is an interpretation, let Th(M) be the set of sentences true in M.
A model of arithmetic is any FDE or LP interpretation of L which is a
model of Th(N ). Note that since Th(N ) is complete (i.e., for all α, either
α ∈ Th(N ) or ¬α ∈ Th(N )), an FDE model is also an LP model. Note,
also, that, as well as N , any classical non-standard model of arithmetic is
a model of arithmetic in the sense I will use the word here. But there are
many more. In particular, as we will see, there are models of arithmetic, M,
such that Th(M) is inconsistent. I will call such models, naturally enough,
inconsistent models of arithmetic.

Now, let M = 〈M,d〉 be any classical model of Th(N ). Let ∼ be an
equivalence relation on M which is also a congruence relation with respect
to the interpretations of the function symbols. Then we may construct the

3For details of the proof, see Priest (1991).
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collapsed interpretation, M∼. By the Collapsing Lemma, M∼ is a model
of arithmetic. Provided that ∼ is not the trivial equivalence relation, that
relates each thing to only itself, then M∼ will model inconsistencies. For
suppose that ∼ relates the distinct members of M , n and m, then in M∼,
[n] = [m] and so 〈[n], [m]〉 is in the extension of =. But since n 6= m in
M, 〈[n], [m]〉 is in the anti-extension too. Thus, ∃x(x = x ∧ x 6= x) holds in
M∼. Let me give a couple of simple examples of this.

Example one. Let M be the standard model of arithmetic. n, p ∈ M
and p > 0. Define a relation, ∼, on M , thus:

x ∼ y iff (x, y < n and x = y) or (x, y ≥ n and x = y (mod p))

It is easy to check that ∼ is a congruence relation on M . Let Mp
n be the

model obtained by collapsing with respect to this. The Collapsing Lemma
assures us that it is a model of arithmetic. It is finite; it has an initial tail
of length n that behaves consistently. The other numbers form a cycle of
period p. The successor graph can be depicted as follows:

0 → 1 → ... → n → n + 1
↑ ↓

n + p− 1 ← · · ·
Example two. Let M be any non-standard classical model of arithmetic.

Define the relation ∼ as follows:

x ∼ y iff (x, y are standard numbers and x = y) or (x, y are non-standard)

Again, it is easy to check that ∼ is an equivalence relation which is also a
congruence on the arithmetic operators. The model obtained by collapsing
with respect to this equivalence relation contains the standard interpretation,
plus an inconsistent “point at infinity”. The successor graph can be depicted
as follows:

0 → 1 → ... Ω
©

1.5. Inconsistent Models of Arithmetic

We now turn to the question of the general structure of models of arithmetic.4

Let M = 〈M,d〉 be any such model. I will refer to the denotations of ′, +,

4The material in this and the next section is reproduced with minor revisions from
sections 9.3, 9.4 of Priest (2002). I am grateful for permission to reuse the material. The
contents of these sections are covered in more detail in Priest (2000).
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and × as the arithmetic operations of M; and since no confusion is likely,
use the same signs for them. I will call the denotations of the numerals
regular numbers.

Let x ≤ y be defined, in the usual way, as ∃z x + z = y. It is easy to
check that ≤ is transitive. For if i ≤ j ≤ k, then for some x, y, i + x = j
and j + y = k. Hence (i + x) + y = k. But (i + x) + y = i + (x + y) (since
we are dealing with a model of arithmetic). The result follows.

If i ∈ M , let N(i) (the nucleus of i) be {x ∈ M ; i ≤ x ≤ i}. In a classical
model, N(i) = {i}, but this need not be the case in an inconsistent model.
For example, in any Mp

n the members of the cycle constitute a nucleus. If
j ∈ N(i) then N(i) = N(j). For if x ∈ N(j) then i ≤ j ≤ x ≤ j ≤ i, so
x ∈ N(i), and similarly in the other direction. Thus, every member of a
nucleus defines the same nucleus.

Now, if N1 and N2 are nuclei, define N1 ¹ N2 to mean that for some (or
all, it makes no difference) i ∈ N1 and j ∈ N2, i ≤ j. It is not difficult to
check that ¹ is a partial ordering. Moreover, since for any i and j, i ≤ j or
j ≤ i, it is a linear ordering. The least member of the ordering is N(0). If
N(1) is distinct from this, it is the next (since for any x, x ≤ 0 ∨ x ≥ 1),
and so on for all regular numbers.

Say that i ∈ M has period p ∈ M iff i+ p = i. In a classical model every
number has period 0 and only 0. But again, this need not be the case in an
inconsistent model, as the Mp

n demonstrate. If i ≤ j and i has period p, so
does j. For j = i + x, so p + j = p + i + x = i + x = j. In particular, if p is
a period of some member of a nucleus, it is a period of every member. We
may thus say that p is a period of the nucleus itself. It also follows that if
N1 ¹ N2 and p is a period of N1 it is a period of N2.

If a nucleus has a regular non-zero period, m, then it must have a mini-
mum (in the usual sense) non-zero period, since the sequence 0, 1, 2, ..., m is
finite. If N1 ¹ N2 and N1 has minimum regular non-zero period, p, then p
is a period of N2. Moreover, the minimum non-zero period of N2, q, must
be a divisor (in the usual sense) of p. For suppose that q < p, and that q is
not a divisor of p. For some 0 < k < q, p is some finite multiple of q plus k.
So if x ∈ N2, x = x + q = x + p + ... + p + k. Hence x = x + k, i.e., k is a
period of N2, which is impossible.

If a nucleus has period p ≥ 1, I will call it proper. Every proper nucleus
is closed under successors. For suppose that j ∈ N with period p. Then
j ≤ j′ ≤ j + p = j. Hence, j′ ∈ N . In an inconsistent model, a number
may have more than one predecessor, i.e., there may be more than one x
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such that x′ = j.5 (Although (x′ = y′) ⊃ x = y holds in the model,
we cannot necessarily detach to obtain x = y.) But if j is in a proper
nucleus, N , it has a unique predecessor in N . For let the period of N be
q′. Then (j + q)′ = j + q′ = j. Hence, j + q is a predecessor of j; and
j ≤ j + q ≤ j + q′ = j. Hence, j + q ∈ N . Next, suppose that x and y are
in the nucleus, and that x′ = y′ = j. We have that x ≤ y ∨ y ≤ x. Suppose,
without loss of generality, the first disjunct. Then for some z, x + z = y; so
j + z = j, and z is a period of the nucleus. But then x = x + z = y. I will
write the unique predecessor of j in the nucleus as ′j.

Now let N be any proper nucleus, and i ∈ N . Consider the sequence
...,′′ i,′ i, i, i′, i′′.... Call this the chromosome of i. Note that if i, j ∈ N , the
chromosomes of i and j are identical or disjoint. For if they have a common
member, z, then all the finite successors of z are identical, as are all its finite
predecessors (in N). Thus they are identical. Now consider the chromosome
of i, and suppose that two members are identical. There must be members
where the successor distance between them is a minimum. Let these be j
and j′...′ where there are n primes. Then j = j + n, and n is a period of
the nucleus—in fact, its minimum non-zero period—and the chromosome of
every member of the nucleus is a successor cycle of period n.

Hence, any proper nucleus is a collection of chromosomes, all of which are
either successor cycles of the same finite period, or are sequences isomorphic
to the integers (positive and negative). Both sorts are possible in an incon-
sistent model. Just consider the collapse of a non-standard model, of the
kind given in 1.4, by an equivalence relation which leaves all the standard
numbers alone and identifies all the others modulo p. If p is standard, the
non-standard numbers collapse into a successor cycle; if it is non-standard,
the nucleus generated is of the other kind.

To summarise so far, the general structure of a model is a liner sequence
of nuclei. There are three segments (any of which may be empty). The
first contains only improper nuclei. The second contains proper nuclei with
linear chromosomes. The final segment contains proper nuclei with cyclical
chromosomes of finite period. A period of any nucleus is a period of any
subsequent nucleus; and in particular, if a nucleus in the third segment has
minimum non-zero period, p, the minimum non-zero period of any subse-
quent nucleus is a divisor of p. Thus, we might depict the general structure

5In fact, it is not difficult to show that there is at most one number with multiple
predecessors; and this can have only two.
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of a model as follows (where m + 1 is a multiple of n + 1):

0, 1, ...

...a → a′...

...b → b′...
...

...
d0...di e0...ei

↑ ↓ ↑ ↓ ...
dm...d′i em...e′i

...
f0...fi g0...gi

↑ ↓ ↑ ↓ ...
fn...f ′i gn...g′i

...

An obvious question at this point is what orderings the proper nuclei may
have. For a start, they can have the order-type of any ordinal. To prove
this, one establishes by transfinite induction that for any ordinal, α, there
is a classical model of arithmetic in which the non-standard numbers can
be partitioned into a collection of disjoint blocks with order-type α, closed
under arithmetic operations. One then collapses this interpretation in such
a way that each block collapses into a nucleus.

The proper nuclei need not be discretely ordered. They can also have
the order-type of the rationals. To prove this, one considers a classical
non-standard model of arithmetic, where the order-type of the non-standard
numbers is that of the rationals. It is then possible to show that the numbers
can be partitioned into a collection of disjoint blocks, closed under arithmetic
operations, which themselves have the order-type of the rationals. One can
then collapse this model in such a way that each of the blocks collapses into
a proper nucleus, giving the result. This proof can be extended to show that
any order-type which can be embedded in the rationals in a certain way can
also be the order-type of the proper nuclei. This includes ω∗ (the reverse of
ω) and ω∗ + ω, but not ω + ω∗.

1.6. Finite Models of Arithmetic

First-order arithmetic has many classical non-standard models, but none
of them is finite. One of the intriguing features of inconsistent models of
arithmetic is that they can be just that, e.g., the Mp

n. For finite models, a
complete characterisation is known.

Placing the constraint of finitude on the results of 1.5, we can infer as
follows. The sequence of improper nuclei is either empty or is composed
of the singletons of 0, 1, ..., n, for some finite n. There must be a finite
collection of proper nuclei, N1 ¹ ... ¹ Nm; each Ni must comprise a finite
collection of successor cycles of some minimum non-zero finite period, pi.
And if 1 ≤ i ≤ j ≤ m, pj must be a divisor of pi.6

Moreover, there are models of any structure of this form. To show this,
take any non-standard classical model of arithmetic. This can be partitioned

6It is also possible to show that each nucleus is closed under addition and multiplication.
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into the finite collection of blocks:

C0, C10 , ..., C1k(1)
, ...Ci0 , ..., Cik(i)

, ..., Cm0 , ..., Cmk(m)

where C0 is either empty or is of the form {0, ..., n}, and each subsequent
block is closed under arithmetic operations.7 We now define a relation,
x ∼ y, as follows:

(x, y ∈ C0 and x = y) or
for some 1 ≤ i ≤ m:

(for some 0 < j < k(i), x, y ∈ Cij , and x = y mod pi) or
(x, y ∈ Ci0 ∪ Cik(i)

and x = y mod pi)
One can check that ∼ is an equivalence relation, and also that it is a con-
gruence relation on the arithmetic operations. Hence we can construct the
collapsed model. ∼ leaves all members of C0 alone. For every i it collapses
every Cij into a successor cycle of period pi, and it identifies the blocks Ci0

and Cik(i)
. Thus, the sequence Ci0 , ..., Cik(i)

collapses into a nucleus of period
pi with k(i) chromosomes. The collapsed model therefore has exactly the
required structure.

Finally in this section, note the following. IfM is finite, Th(M) is decid-
able. The truth value(s) in M of an atomic sentence can be computed, since
the denotations of the functions and predicates, being on a finite domain,
are computable. The truth values of propositional compounds are computed
by LP (FDE) truth tables, and, since the domain is finite, quantified sen-
tences are equivalent to finite conjunctions/disjunctions. (Thus, ∃xα(x) has
the same truth value(s) as α(d0) ∨ ... ∨ α(dn), where D = {d0, ..., dn}.)

1.7. Open Problems

There are many interesting questions about inconsistent models, even the
finite ones, the answers to which are not known. I finish the technical part
of this paper by listing some.

• Characterise the orderings of the proper cycles that may be realised in
an inconsistent model.

• Can a nucleus have an infinitely descending sequence of periods?

• Given a model with a particular structure of cycles (nuclei and chromo-
somes), how many models of that structure are there? (The behaviour

7The existence of such a partition follows from a standard result in the study of classical
models of arithmetic. See Kaye (1991), sect. 6.1.
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of the successor function in a model does not determine the behavior
of addition and multiplication, except in the tail.)

• Must nuclei always be closed under addition and multiplication?

• The set of sentences true in any finite model is decidable, and a for-
tiori axiomatisable. Are there any infinite models such that the set of
sentences that hold in them is axiomatic?

Perhaps the most fundamental open question is as follows. Not all inconsis-
tent models of arithmetic are collapses of classical models. Let M be any
model of arithmetic; if M′ is obtained from M by adding extra pairs to the
anti-extension of =, call M′ an extension in M. If M′ is an extension of M,
M′ is itself a model of arithmetic (as may be shown by a simple inductive
argument). Now, consider the extension of the standard model obtained
by adding 〈0, 0〉 to the anti-extension of =. This is not a collapsed model,
since, if it were, 0, being inconsistent, would have to have been identified
with some x > 0. But then 1 would have been identified with x′ > 1. Hence,
0′ 6= 0′ would also be true in the model, which it is not. Maybe, however,
the following conjecture is true:

• Each inconsistent model is the extension of a collapsed classical model.

If this conjecture is correct, collapsed models can be investigated via an
analysis of the classical models of arithmetic and their congruence relations.

2. Philosophical Issues

2.1. Historical Overview

We now turn to some issues in the philosophy of arithmetic which are posed
by the existence of inconsistent models. I start, as with the technical section,
by giving a brief historical overview.

The first paper to argue for the inconsistency of arithmetic predates
the technical investigations, and was Priest (1979). The argument appeals
to Gödel’s first Incompleteness Theorem. This was criticised by Chihara
(1984). An extended defence of the argument appeared in Priest (1987), ch.
3.

The first person to deploy the technical material on inconsistent models
in a philosophical context was van Bendegem (1993), (1994). He was par-
ticularly concerned with the finite models, and developed an argument for
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finitism on the basis of them. Priest (1994a) took up the idea, but used
the finite models in defence of inconsistent arithmetic, rather than finitism.
Where van Bendegem saw a greatest number, Priest saw a least inconsis-
tent number. The idea of a least inconsistent number was discussed further
in Priest (1994b). Priest (1994a) invokes various results about the finite
models and metatheoretic notions, particularly provability. The relation-
ship between finite models and provability is discussed further in Mortensen
(1995). Priest and van Bendegem’s deployment of inconsistent models is
criticised by Batens (200a). Denyer (1995) is also a critique of Priest, to
which Priest (1996a) is a reply.

Priest (1996b) invokes the inconsistent models of arithmetic in a quite
different way: to argue the case for the possibility of arithmetic revision.8

Most recently, Priest’s (1987) argument for the inconsistency of arithmetic
has been criticised by Shapiro (2002), though the technical material on in-
consistent models is not deployed.

In the second half of this paper I will review and discuss some of these
developments. At the end, I will address some of Shapiro’s criticisms specif-
ically in the light of the technical material on inconsistent arithmetics.

Let me start by setting the scene. If M is any model of arithmetic
Th(M) is a theory, that is, a set of arithmetic sentences closed under LP
(and FDE) consequence, and contains Th(N ). If M is an inconsistent
model of arithmetic, Th(M) is also inconsistent.9 I will call any such theory
an inconsistent arithmetic. Now, when we count and perform arithmetic
operations, which theory of arithmetic is right?

2.2. Arithmetic Revision

To answer this question we need to distinguish between pure arithmetic and
applied arithmetic. A pure arithmetic is the set of truths about numbers
themselves. An applied arithmetic is a pure arithmetic employed for the
purposes of counting something or other. Now, if one askes what the correct
pure arithmetic is, a natural answer is that the correct theory of arithmetic
is Th(N ), the set of sentences true in the “standard model”. Let us, for the

8This paper was due to appear in the proceedings of the conference at which it was
given. These never, unfortunately, eventuated. It is worth noting that the idea that one
might use a non-standard arithmetic to count appears as early as Gasking (1940).

9There are, in fact, LP theories that contain all of Th(N ), but that are not the theory
of some collapsed model. This, for example,

T
n∈ω Mp

n, being an intersection of theories,
is a theory. But it contains the sentence ∃x(x 6= x), whilst it contains nothing of the form
n 6= n.
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moment, agree that this is true.
It remains the case that, at least for some purposes, we might wish to use

a different arithmetic to count some things. Compare the situation with that
in geometry. Until the 19th century, the correct geometry for application
to space was taken to be Euclidean geometry. But in the 20th century, this
position was revised. The correct geometry is not Euclidean, but some non-
Euclidean geometry. Could it be that we might want to revise our arithmetic
in the same way?

It seems to me that we might. As fallibilists have argued, any theory
that we employ may be revised under the pressure of recalcitrant evidence.
Mathematical theories are no exception—as the history of geometry demon-
strates. Whilst I have no situation to offer where the revision of arithmetic
is currently plausible, it is easy enough to imagine the possibility of such
things. Here, for example, is one where we might be inclined to revise our
arithmetic in favour of Th(M1

n) (where, for all m ≥ n, m = n.)
Let us suppose that we come to predict a collision between an enormous

star and a huge planet.10 Using a standard technique, we compute their
masses as x1 and y1, respectively. Since masses of this kind are, to within
experimental error, the sum of the masses of the baryons (protons and neu-
trons) in them, it will be convenient to take a unit of measurement according
to which a baryon has mass 1. In effect, therefore, these figures measure the
numbers of baryons in the masses. After the collision, we measure the mass
of the resulting (fused) body, and obtain the figure n, where n is much less
than x 1 + y1. Naturally, our results are subject to experimental error. But
the difference is so large that it cannot possibly be explained by this. We
check our instruments, suspecting a fault, but cannot find one; we check our
computations for an error, but cannot find one. We have a puzzle. Some
days later, we have the chance to record another collision. We record the
masses before the collision. This time they are x2 and y2. Again, after the
collision, the mass appears to be n (the same as before), less than x2 + y2.
The first result was no aberration. We have an anomaly.

We investigate various ways of solving the anomaly. We might revise the
theories on which our measuring devices depend, but there is no obvious way
of doing this. We could say that some baryons disappeared in the collision;
alternatively, we could suppose that under certain conditions the mass of a
baryon decreases. But either of these options seems to amount to a rejection
of the law of conservation of mass(-energy), which would seem to be a rather
unattractive course of action.

10The following example comes, with minor revisions, from Priest (1996b).
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Then someone, call them Einquine, fixes on the fact that the resultant
masses of the two collisions were the same in both cases, n. This is odd.
If mass has gone missing, why should this produce the same result in both
cases? An idea occurs to Einquine. Maybe our arithmetic for counting
baryons is wrong.11 Maybe the appropriate arithmetic is Th(M1

n). For in
this arithmetic x1 + y1 = x2 + y2 = n, and our observations are explained
without having to assume that the mass of baryons has changed, or that
any are lost in the collisions! Einquine hypothesizes that n is a fundamental
constant of the universe, just like the speed of light, or Planck’s constant.12

While she is thus hypothesising, reports of the collisions start to come
in from other parts of the galaxy. (The human race had colonised other
planets some centuries before.) These reports all give the masses of the two
new objects as the same, but all are different from each other. Some even
measure them as greater that the sum of their parts. Einquine is about to
give up her hypothesis, when she realises that this is quite compatible with
it. Even if the observer measures the mass as m, provided only that m ≥ n
then m = n, and their results are the same!

But this does leave a problem. Why do observers consistently record
numerical results that differ from each other? Analysing the data, Einquine
sees that values of n (hers included), are related to the distance of the ob-
server from the collision, d, by the (classical) equation n = n0 + kd (where
n0 and k are constants). In virtue of this, she revises her estimate of the
fundamental constant to n0, and hypothesizes that the effect of an incon-
sistent mass of baryons on a measuring device is a function of its distance
from the mass. Further observational reports bear this hypothesis out; and
Einquine starts to consider the mechanism involved in the distance-effect.

We could continue the story indefinitely, but it has gone far enough. For
familiar reasons, there are likely to be theories other than Einquine’s that
could be offered to explain the data. Some of them might preserve orthodox
arithmetic by jettisoning conservation laws, or by keeping these but varying
some physical auxiliary hypotheses. Others might modify arithmetic in some
other, but consistent, way. And each of these theories might become more
or less plausible in the light of further experimentation, etc. But the point
is made: it is quite possible that we might vary our arithmetic for empirical

11We already know that different sorts of fundamental particles satisfy different sorts of
statistics.

12The revision of arithmetic envisaged here is a local one, in that it is only the counting
of baryons that is changed. It would be interesting to speculate on what might happen
which could motivate a global change, i.e., a move to a situation where everything is
counted in the new way.
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reasons. There can be alternative applied arithmetics, just as there are
alternative applied geometries.

2.3. Consistent vs. Inconsistent Arithmetics

But now let us consider a stronger possibility—not just that we might want
to apply an inconsistent arithmetic for some purpose, but that the correct
pure arithmetic is one of the inconsistent ones. Which one? That is ob-
viously an important question; but for the present, it does not need to be
addressed.13 The following considerations do not depend on which inconsis-
tent arithmetic is at issue—or if they do, I will make this explicit.

The orthodox view is certainly that Th(N ) is the true arithmetic, not
Th(M), where M is some inconsistent model of arithmetic. Of course
Th(N ) is true of N , and Th(M) is true of M. That is not contentious.
The question, then, is whether it is N or M that is the correct interpre-
tation of the language. It might seem as though it is easy to resolve this
issue, but it is not. A dispute between the proponent, A, of “standard arith-
metic” and the proponent, B, of an inconsistent arithmetic is of a somewhat
unusual kind. Anything (at least, anything arithmetic) that A endorses, B
will endorse too. Thus, for example, A will insist that there is no greatest
number (∀x∃y y > x); B will concur. The locus of disagreement will be in
the fact that B will assert things that A will not wish to assent to. Why
suppose A right and B wrong? A may point out that B’s view of arithmetic
is inconsistent; but unless they have some independent reason to suppose
that inconsistency—or at least inconsistency in arithmetic—is a bad thing,
this simply begs the question. A may, of course, attempt to mount a defence
of consistency in general. I do not wish to enter into that debate here. Let
me just say, for the record, that I am not aware of any very persuasive—and,
in particular, non-question-begging—arguments for that conclusion.14

Are there any reasons, however, that push us towards endorsing an in-
consistent arithmetic? One reason is that inconsistent arithmetics avoid
some of the limitative results of the classical metatheory of arithmetic, and
the unhappinesses associated with these.15 Inconsistent arithmetics can do
lots of things that consistent arithmetics cannot do. Thus, for example, as
I have already noted, some inconsistent arithmetics are decidable. If one

13The question is discussed in the context of the finite models in Priest (1994b).
14See, e.g., Priest (1998).
15This matter is discussed further in Priest (1994a). I am not now happy with a number

of the arguments used in that paper. Some reasons why are explained in Priest (1996a).
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of these is the correct arithmetic then there is an algorithm for solving any
arithmetical problem, which would certainly be very nice.

Another thing that inconsistent arithmetics can do is contain their own
truth predicate; hence Tarski’s theorem is avoided. Tarski’s theorem shows
that any theory that contains its own truth predicate is inconsistent; but
this is obviously no problem in an inconsistent arithmetic! The language of
arithmetic that we have been dealing with so far contains no truth predicate.
However, it is well known16 that any arithmetic based on LP can be extended
conservatively with a truth predicate, T , satisfying the two way rule:

T 〈α〉
α

where 〈α〉 is the numeral of the gödel number of α.17

Of course, since the extension of the language with a truth predicate is
conservative, if we start with a consistent arithmetic, the purely arithmetic
fragment of the theory with the truth predicate will also be consistent. So
the inconsistency generated by the truth predicate gives no reason, as such,
to suppose that the purely arithmetic fragment is inconsistent. But if one
can have a truth predicate, excluding it from “pure arithmetic” is somewhat
arbitrary. Truth has just as good a claim to be considered a logical predicate
as the identity predicate. It should, therefore, be a part of all “pure theories”.

2.4. Gödel’s Theorems

Another thing that consistent arithmetic cannot do is provide a complete
axiomatic theory. Inconsistent arithmetics can do this. As I have already
noted, there are decidable complete inconsistent arithmetics; a fortiori they
are axiomatic (and so, to point out the obvious, they can be specified by
an axiom system in the usual way, quite independently of any considera-
tion of collapsed models). In virtue of the methodological importance of
axiomatisability in mathematics, this is a significant plus.

16See, e.g., Priest (2002), 8.1.
17It is worth noting also that any finite LP model of arithmetic will model all instances

of the Induction Schema, however the language of arithmetic is extended. The Schema is
of the form: (α(0) ∧ ∀x(α(x) ⊃ α(x′))) ⊃ ∀xα(x). With a little massaging, this can be
seen to be equivalent to: ¬α(0) ∨ ∃x(α(x) ∧ ¬α(x′)) ∨ ∀xα(x). Now, if the last disjunct
is true, we are home. If not, there is some n such that α(n) fails, and since there is only
a finite number of numbers in the domain, a least such n. Since α(n) fails, ¬α(n) holds.
Thus, if n = 0 the first disjunct holds. If not, n = m′, and α(m), so the middle disjunct
holds.
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Naturally, it is worth asking what happens to the “Gödel undecidable
sentence” in these arithmetics. Take any inconsistent arithmetic, Θ, which is
a collapsed model of a classical model of arithmetic, M. Since it is axioma-
tisable, its membership can be represented in the standard model—and also
M, since this is elementarily equivalent to it—by a formula of one free vari-
able, B(x). (B(x) is of the form ∃y Prov(y, x), where Prov(y, x) represents
the proof relation in M.) That is, for any sentence, α:18

If α ∈ Θ then B 〈α〉 ∈ Th(M).

If α /∈ Θ then ¬B 〈α〉 ∈ Th(M).

By the Collapsing Lemma, it follows that:

(1) If α ∈ Θ then B 〈α〉 ∈ Θ.

(2) If α /∈ Θ then ¬B 〈α〉 ∈ Θ.

The undecidable sentence is a sentence, γ, of the form ¬B 〈γ〉. It is not
difficult to see that both γ and ¬γ are provable in Θ. For either γ ∈ Θ
or γ /∈ Θ. In the first case, B 〈γ〉 = ¬γ ∈ Θ, by (1). In the second case,
¬γ ∈ Θ, since Θ is complete, but ¬B 〈γ〉 = γ ∈ Θ, by (2). Either way,
γ ∧ ¬γ ∈ Θ. Note that, unlike the case of the contradiction connected with
Tarski’s Theorem, γ is a purely arithmetic sentence; that is, its vocabulary
is just that of the pure language of arithmetic.

Given the inconsistency of the arithmetic in question, a consistency proof
for it, and a fortiori a consistency proof within Θ, is not to be expected.
Classically, of course, consistency and non-triviality go together; but in a
paraconsistent context, this is not the case. In particular, though Θ is in-
consistent, it is not trivial (unless it is produced by collapsing under the
degenerate equivalence relation that relates everything to everything). And
the non-triviality of Θ can be proved within Θ. In this sense, Gödel’s sec-
ond Incompleteness Theorem fails for inconsistent arithmetics. For take any
unprovable sentence, α. Then since α /∈ Θ, ¬B 〈α〉 ∈ Θ, by (2). (Beware,
however. This does not rule out B 〈α〉 from being in Θ, too! We will return
to this matter later.)

Finally, closely connected with Gödel’s second Incompleteness Theorem
is Löb’s Theorem, to the effect that in classical arithmetics if B 〈α〉 ⊃ α is
provable, so is α. It follows that not all instances of B 〈α〉 ⊃ α are provable.
But this seems odd. All such sentences are clearly true; how is that truths

18I write B 〈α〉 instead of B(〈α〉), etc., for ease of readability.
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that seem as innocent as these must fail to be provable? In Θ, as one would
expect, all instances are provable. For α ∈ Θ or α /∈ Θ. In the second case,
¬B 〈α〉 ∈ Θ, by (2). In either case, ¬B 〈α〉 ∨ α ∈ Θ. Note, also, that all
instances of the converse are also provable. For if α ∈ Θ, then B 〈α〉 ∈ Θ, by
(1), so ¬α ∨ B 〈α〉 ∈ Θ. And if α /∈ Θ, ¬α ∈ Θ, since Θ is complete; hence
¬α∨B 〈α〉 ∈ Θ. In a sense then, B is a truth predicate since B 〈α〉 ≡ α ∈ Θ
(though this does not necessarily mean that B 〈α〉 and α have the same truth
values in the collapsed model).

2.5. The Naive Notion of Proof

We see, then, that inconsistent arithmetics can do a lot of nice things, and
can avoid a number of features that many have held to be problematic for
consistent arithmetic. This does not demonstrate that true arithmetic is
inconsistent, but it certainly moves us in this direction. There are consider-
ations that drive us further.

As is clear to anyone who is familiar with Gödel’s theorem, at it’s heart
there lies a paradox. Informally, the “undecidable” sentence is the sentence
‘This sentence is not provable’. Suppose that it is provable; then since
whatever is proved is true, it is not provable. Hence, it is not provable. But
we have just proved this. So it is provable after all (as well).19 Let us look
at this paradox more closely.

When mathematicians establish things to be true, they give proofs.
These are informal deductive arguments, appealing to things which have
already been proved or, ultimately, from things that are obviously true, and
so where no proof is required. I will call the notion of proof in question here
the naive notion of proof. Let us restrict ourselves to what can be proved
naively about natural numbers. The language of naive proof about numbers
is standard mathematical English (or some other natural language), but it
is natural to suppose that this can be regimented into a suitable formal lan-
guage, so that sentences may be assigned gödel-codes. Let us write BN (x) as
a predicate of natural numbers which expresses the fact that x is (the code
of) a sentence that is naively proved. BN satisfies the following principles:

(3) ` BN 〈α〉 ⊃ α

(4) If ` α then ` BN 〈α〉
where ` records naive proof. For (3): it is analytic that whatever is naively
proved is true. Naive proof just is that sort of mathematical argument that

19The paradox is of the same kind as the “Knower paradox”; see Priest (1995), 10.5.
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establishes something as true. And since this is analytic, it is itself naively
provable. (Whether it is axiomatic or is derivable from more fundamental
principles, we do not need to go into here). For (4): if something is naively
proved then this fact itself constitutes a proof that α is proved.

But from these two principles, we can show that ` is inconsistent. By
usual methods of self-reference, we can construct a sentence that says of itself
that it is not provable, i.e., a sentence, γ, of the form ¬BN 〈γ〉. Substituting
in (3) gives us ` BN 〈γ〉 ⊃ ¬BN 〈γ〉, i.e., ` ¬BN 〈γ〉 ∨ ¬BN 〈γ〉. Thus,
` ¬BN 〈γ〉; that is, ` γ. By (2), ` BN 〈γ〉 (i.e., ` ¬γ). Arithmetic is
therefore inconsistent.

I have not assumed that BN is itself a predicate that can be constructed
from the usual arithmetic vocabulary (′, +, ×, =). But there are, in fact,
reasons to suppose that it can be.20 It is part of the very notion of proof
that a proof should be effectively recognised as such. For the very point of
a proof is that it gives us a way of settling whether something is true. It is,
therefore, a proof only when it is recognised as such. Thus, Dummett, for
example, has stressed the point: it is part of the very notion of proof, unlike
truth, that we can recognise one when we see it—at least in principle.21

Moreover, proof of the kind in question is a human practice. It is one
that must be taught and learned. The human brain is, presumably, some
sort of finite-state machine. It could not grasp the notion of proof if this
were not axiomatic; if it were not, it would transcend the abilities of such
a machine. For similar reasons, one must suppose that the grammar of any
speakable language must be generated by a decidable set of rules. It might be
pointed out that standards of proof may change over time, and that there is
no reason to suppose that the change, itself, must happen in a rule-governed
way. Indeed so. But we may take naive proof to comprise the standards of
proof that are in operation here and now.

If naive proof in this sense is, indeed, axiomatic, then we can find a Σ1

sentence of the standard language of arithmetic that expresses BN . That is,
arithmetic, as expressed in the usual vocabulary, is itself inconsistent. Nor
is this technically unfeasible. In 2.4, we have already seen how a pure arith-
metic can contain its own proof predicate and the attendant contradiction
concerning its Gödel sentence.

20This argument is developed further in Priest (1987), ch. 3.
21See Dummett (1975).
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2.6. Shapiro’s Criticisms

In (2002) Shapiro, following ideas of Priest (1987), constructs an axiomatic
theory, PA∗, that can prove its own Gödel sentence. The language of the
theory contains a truth predicate, which is involved in the proof of the
sentence;22 but the Gödel sentence itself, as Shapiro emphasises, is purely
arithmetic, employing only the proof predicate for the theory, which, being
axiomatisable, is expressible in terms of ′, +, × and =. Actually, the exact
details of PA∗ are left somewhat under-determined; but we need not go
into that here. What I want to discuss are the unpalatable consequences
that Shapiro supposes to follow from the fact that this theory can prove its
own Gödel sentence. The features that Shapiro points to are possessed just
as much by the axiomatisable inconsistent arithmetics that we looked at in
section 2.4. I will therefore discuss his objections in the context of these.23

In the inconsistent arithmetic, Θ, both γ and ¬γ are provable, where γ
is purely arithmetic, and is of the form ¬B 〈γ〉. Since γ is provable, there
is some number, g, which is the code of its proof. Hence, Prov(g, 〈γ〉)
is true in the standard model, and so is provable in Θ. But ¬B 〈γ〉 is
¬∃y Prov(y, 〈γ〉), i.e., ∀y¬Prov(y, 〈γ〉). Hence ¬Prov(g, 〈γ〉) is provable as
well. Now, Prov(x, y) expresses a primitive recursive relation. Hence, if Θ is
the true arithmetic, we have to accept that there are inconsistencies concern-
ing numbers that are of this very basic kind. Worse, consider the following
biconditionals. From left to right, they are unproblematic. Suppose that we
accept them from right to left too.

P+ m is the code of a proof with of formula with code n iff Prov(m,n) ∈ Θ

P− m is the not code of a proof with of formula with code n iff ¬Prov(m,
n) ∈ Θ

Then we have to accept that some number both is and is not the code of a

22The argument appeals to the claim that whatever is provable is true: ∀x(BN (x) ⊃ Tx)
(plus the T -schema for the truth predicate). Given the meaning of the naive notion
of proof, this is certainly analytically true, though it may well be provable from more
fundamental things. There is, however, a way that the truth predicate can, in fact, be
dispensed with. All that we actually need are the instances of the schema BN 〈α〉 ⊃ α,
which are, equally, analytic. In fact, given the conditionals of this sort, the proof of the
“undecidable sentence”, γ = ¬BN 〈γ〉, reduces to a very simple form. Substituting γ in
the schema gives: ¬BN 〈γ〉 ∨ γ. That is, γ ∨ γ, i.e., γ.

23The material in this section arose from a seminar at the University of St Andrews at
the end of 2002. I am grateful to the participants, and particularly to Steward Shapiro,
for their helpful comments.
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proof, and, more generally, that something could be both provable and not
provable. What could this mean?

Shapiro offers three responses to this situation:

A Reject the soundness of Θ, on the basis of the fact that primitive recursive
relationships are consistent.

B Accept that Θ is sound, but reject the biconditionals P+ and P−, and
hence, on the assumption that Θ is the true arithmetic, the isomor-
phism between numbers with their operations and strings with theirs.

C Accept that Θ is sound, the biconditionals P+ and P−, and hence that
something can both provable and not provable.

All of these options, Shapiro argues, should be resisted. If one is to take
seriously the idea that Θ is the true arithmetic, option A is obviously not
the way to go. One has to accept that even primitive recursive relations
may be inconsistent. But this is not news. In the finite models of arithmetic
even numerical equations can be inconsistent; that is, there can be truths
of the form m = n ∧m 6= n. One also has to accept, more generally, that
even the computational part of mathematics is inconsistent. But this is not
a problem either. Θ itself tells us exactly what an inconsistent computation
theory is like. The ∆0 formulas (that is, the sentences obtainable from
equations using connectives and bounded quantifiers) express the recursive
properties/relations.

Option B certainly involves jettisoning a connection in terms of which
logicians have become accustomed to thinking. This is certainly a loss,
though I do not think it as devastating as Shapiro does. However, it seems
to me that the simplest and most natural response is option C, so I will
discuss this option at length. Shapiro marshals essentially two considerations
against it. Let us consider these in turn.

2.7. The Inconsistency of Peano Arithmetic

Shapiro’s first objection, and the quicker to deal with, is that if one holds
that primitive recursive relations are inconsistent, it follows not just that
Θ is inconsistent, but that Peano Arithmetic (PA) is inconsistent—which
seems implausible. The reason is that all recursive relationships are known
to be representable in PA.

The reply is simply that if the recursive relationships are as specified by
Θ, they are not all representable in PA—just because it is consistent. Where
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does the proof of the fact that all recursive relationships are representable
in PA break down, however? The answer depends on which proof we are
talking about, and on which inconsistent theory of arithmetic is correct.
But let us suppose, for the sake of argument, that Θ is Th(M6

10) (refer to
the diagram of 1.4); and let us look at a direct proof to the effect that the
formula x = y′ represents the successor relation in Θ.24 We need to show
that if i = j′ then i = j′ ∈ PA. This is proved by induction on j. Suppose
that j = 0. Then if i = 0′, i = 1, and 1 = 0′ ∈ PA. Now suppose that the
result holds for j, and show it for j′. So suppose that i = j′′. Since i is not
0, there is a k such that i = k′. Hence, k′ = j′′, and k = j′. By induction,
k = j′ ∈ PA; so i = k′ = j′′ ∈ PA.

The second part of this argument breaks down for Th(M6
10), since a

number may have multiple predecessors, some of them greater than itself.
Thus, suppose that j is 8. If i = 8′′ then certainly for some k, k′ = 8′′; k
can be 9 or 15. Now, 9′ = 8′′, 9 = 8′, 9 = 8′ ∈ PA (by induction), and so
9′ = 8′′ ∈ PA. But, though 15′ = 8′′, it does not follow that 15 = 8′, so the
argument breaks down. Indeed, 15 = 8′ /∈ PA.

Thus, and in general, if you take Θ to provide the correct account of
recursive relationships, then these will be representable (trivially) in Θ; but
PA will be incomplete, since it captures only a consistent fragment of the
truth. Dually, of course, if you take the usual classical line on recursive rela-
tionships, PA will be complete, but Θ will give more than the truth, because
it is inconsistent. In other words, if you match up the formal arithmetic and
the theory of recursive relations properly, then you will get representability.
But if you mis-match these by taking one to be consistent and the other not,
then things will go wrong.

2.8. The Incredulous Stare

Shapiro’s other main objection amounts to a version of the incredulous stare.
Let me put the start of it in his own words:25

On all accounts—including the non-dialetheic perspective—we
have that g is the code of a Θ-derivation of γ. This can be
verified with a painstaking, but completely effective check. How
can the dialetheist go on to maintain that, in addition, g is not
the code of a Θ-derivation of γ? What does it mean to say this?

24Proofs of this kind can be found in Boolos and Jeffrey (1974), ch. 14, Part III.
25Shapiro (2002), p. 828. I have changed the notation to bring it in line with that used

in this essay. The italics are original.
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Since ¬Prov is recursive predicate, we can supposedly verify—at
the same time, in almost exactly the same way—that g is not the
code of a Θ-derivation of γ. How?

Shapiro asks how we can possibly verify a sentence expressing a recursive
relation and its negation? What can this mean?

In principle, the answer is easy. Since we are endorsing P+ and P−,
we are now taking seriously the thought that metatheoretic sentences may
be contradictory. If so, they must play by the same rules as those of Θ,
and in particular, be based on the logic LP (or FDE). In any theory
based on LP or FDE, α and ¬α are verified by different procedures. Thus,
e.g., to determine whether t1 = t2 is true, we have to look to see whether
〈d(t1), d(t2)〉 ∈ E=. To determine whether t1 6= t2 is true, we have to look
to see whether 〈d(t1), d(t2)〉 ∈ A=. These are separate matters. Thus, in
Th(M6

10), once we have checked to see whether i = j, the question of whether
i 6= j is a further question. 0 = 0 is true, but 0 6= 0 is not. 10 = 10 is true,
but so is 10 6= 10.

Thus, to bring the matter to bear on proof explicitly, suppose that g is
the code of a proof of γ. Suppose, for the sake of argument, that the code is
37. Then to say that g is the code is to say something equivalent to g = 37.
What does it mean to say that it is also not the code of a proof of γ? It is
to say that g 6= 37 as well. This is the case if 37 = 37 ∧ 37 6= 37, which it
can be in an inconsistent arithemtic.

And what does it mean to say that γ is both provable and not? To say
that it is provable is to say that ∃x(x is the code of a proof of γ), i.e., on the
supposition at hand, ∃x x = 37. To say that it is not provable is to say that
¬∃x(x is the code of a proof of γ) i.e., ∀x¬(x is the code of a proof of γ),
i.e., ∀x¬(x = 37), i.e., 0 6= 37∧1 6= 37∧ ...∧37 6= 37∧ ...; which is, of course,
true if 37 6= 37. In other words, to say that γ is not provable is to say that
every number is distinct from a code of the proof of γ. This does not rule
out there being a proof of γ. (In general, the truth of ¬α in a paraconsistent
setting does not rule out the truth of α.) In particular, it will hold if the
proof is distinct from itself. And how can a proof be distinct from itself? In
the same way that a number can. After all, on option C, the one at issue,
we are retaining the structural identity between strings and numbers. Both
are, after all, abstract objects. And the inconsistent behaviour of strings is
just as good or bad as the inconsistent behaviour of numbers.26

26It is worth noting that if numbers have inconsistent properties, then this will affect
their behaviour whatever theory they are taken to be coding. Thus, the gödel codes
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There are, or course, concrete objects whose behavior in some sense
represents the behaviour of the abstract objects. In this case, there are
marks of dried ink on paper that represent the abstract strings. But no one
expects the properties of the abstract objects to carry over of necessity to
their physical representations. Thus, 3 > 1; but a 9-point token of ‘3’ is much
smaller than a 18-point token of ‘1’. So the mere fact that, e.g., 37 6= 37
does not necessarily mean that we have to find some concrete object that
is not self-identical. Of course, we need not rule out this possibility either.
Talk of concrete objects that are not self-identical immediately takes one’s
thought down the path of sub-atomic particles and their curious behaviour.
But this is not the place to follows such speculations.

2.9. Conclusion

Shapiro’s objections stem from being half-hearted about dialetheism. If
one endorses an inconsistent arithmetic, but tries to hang on to either a
consistent computational theory or a consistent metamathematics of proof,
one is in for trouble. The solution to his problems is therefore not to be half-
hearted, and to accept that these other things are inconsistent too. Indeed,
the arithmetic itself shows us how to do this: the facts about computability
and provability are simply read off from the arithmetic.27

Discussions in the philosophy of mathematics are always built on shaky
foundations if they are not underpinned with the appropriate technical ma-
terial. This is certainly true of discussions of the inconsistency of arithmetic.
The inconsistent models show us exactly what can be done and how. That

of PA will behave just as inconsistenly as those of Θ. In other words, if numbers are
inconsistent, we may expect things to be both provable and not provable in PA just as
much as in Θ. This does not, of course, mean that PA is itself inconsistent. As to where
the inconsistency of gödel codes arises, it might be only for numbers so large that they are
larger than anything that is humanly meaningful. (See Priest (1994a).)

27The philosophical discussion has appealed to various metatheoretic properties of in-
consistent arithmetics. How were these established? A natural assumption is that they
were proved in a classical (consistent) metatheory, such as ZF . If we are now endorsing
an inconsistent (meta-)arithmetic, we can no longer be working in ZF . What entitles us
to be sure that we may still invoke those results? One answer goes essentially as follows.
Start with a model of ZF , say (an initial segment of) the cumulative hierarchy. Then
use the Collapsing Lemma to produce a collapsed model of ZF in which the structure of
the numbers brings it into line with the inconsistent arithmetic we are envisaging. (For
collapsed models of ZF , see Priest (1995), Part 3, Technical Appendix.) We can take the
theory of that collapsed model to provide the metatheory in which we are working. And
just as any theorem of standard arithmetic holds in the theory of a collapsed model of
arithmetic, so any theorem of ZF holds in that theory.
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hardly settles many of the interesting philosophical questions. But it does
put a firm skeleton below the philosophical flesh.
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